Finiteness conditions on groups and quasi-isometries

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-isometries and Rigidity of Solvable Groups

In this note, we announce the first results on quasi-isometric rigidity of non-nilpotent polycyclic groups. In particular, we prove that any group quasiisometric to the three dimenionsional solvable Lie group Sol is virtually a lattice in Sol. We prove analogous results for groups quasi-isometric to R⋉Rn where the semidirect product is defined by a diagonalizable matrix of determinant one with ...

متن کامل

Groups Acting on Semimetric Spaces and Quasi-isometries of Monoids

We study groups acting by length-preserving transformations on spaces equipped with asymmetric, partially-defined distance functions. We introduce a natural notion of quasi-isometry for such spaces and exhibit an extension of the Švarc-Milnor Lemma to this setting. Among the most natural examples of these spaces are finitely generated monoids and semigroups and their Cayley and Schützenberger g...

متن کامل

Second Topic: Quasi-isometries and Splittings of Groups

The word metric on a group is independent of the choice of generating set, so the quasiisometry type of a group is well defined. We say that two groups are (abstractly) commensurable if they are related to one another by any (finite) sequence of finite processes: taking finite-index subgroups or supergroups, finite quotients or extensions. Groups which are commensurable are quasi-isometric. The...

متن کامل

Quasi-isometries and Amalgamations of Tame Combable Groups

We study the property of tame combability for groups. We show that quasi-isometries preserve this property. We prove that an amalgamation, A ∗C B, where C is finitely generated, is tame combable iff both A and B are. An analogous result is obtained for HNN extensions. And we show that all one-relator groups are tame combable.

متن کامل

A Remark on Quasi-isometries

We show that if f : Bn -IRn is an e-quasi-isometry, with e < 1, defined on the unit ball Bn of Rn, then there is an affine isometry h : Bn -Rn with lIf(x) -h(x)|I < Ce(l+logn) where C is a universal constant. This result is sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1994

ISSN: 0022-4049

DOI: 10.1016/0022-4049(94)90069-8